Les expériences de Beadle et Tatum

En 1941, bien avant la découverte de la structure de l'ADN (1953), Beadle et Tatum s'intéressent plus particulièrement à un champignon filamenteux appelé *Neurospora crassa*. C'est une « moisissure » qui peut facilement être cultivée sur un milieu gélosé, sur boite ou dans un tube.

A partir de l'analyse des documents et de vos connaissances, déterminez en quoi les expériences de Beadle et Tatum puis celle de Yanofsky permettent d'aboutir au dogme « Un gène produit une protéine ».

Document 1 : La voie de biosynthèse du tryptophane chez Neurospora crassa

Les premiers travaux de Beadle et Tatum concernent la biochimie et la production de différentes molécules chimiques. Après extraction et purification, ils comprennent que les champignons Neurospora doivent produire du tryptophane pour se développer. La production de tryptophane dépend d'une suite de réactions chimiques dépendantes de 3 **enzymes**.

Document 2 : L'obtention de mutants de Neurospora crassa

Pour identifier si l'ADN peut impacter la production de tryptophane chez Neurospora, les deux chercheurs ont réalisé une expérience de **mutagenèse** : ils ont irradié les souches de Neurospora aux rayons X pour produire des **mutations**. A la suite de l'irradiation, ils cultivent les champignons sur différents milieux. Les résultats sont présentés dans le tableau ci-dessous.

	Milieu minimum (MM)	MM + acide anthranilique	MM + indole	MM + Tryptophane
Souche sauvage	+	+	+	+
Mutants A	0	+	+	+
Mutants B	0	0	+	+
Mutants C	0	0	0	+

^{+ :} croissance du champignon ; 0 : pas de croissance (mort du champignon).

<u>Document 3 : La caractérisation des</u> mutants de classe C

En 1967, Yanofsky utilise une technique biochimique pour identifier la suite des acides aminés de l'enzyme TryA (enzyme 3 du document 1).

Il compare alors l'enzyme TryA produite par le champignon sauvage et l'enzyme Try1 présente chez les mutants de type C. Il reproduit cette expérience avec 6 mutants. Ses résultats sont présentés dans le tableau ci-contre.

Position relative des mutations étudiées sur l'ADN du gène <i>TryA</i>	Différences entre la protéine TryA normale et la protéine Try1 des mutants				
		Position de l'acide	Acide amir	de aminé présent otéine chez le mutant Leu Val ou Gln ou Met Arg	
mutation 1 = mutant 1	Mutant	aminé modifié	dans la protéine normale		
mutation 2 = mutant 2	1	22	Phe	Leu	
	2	49	Glu	ou Gln	
mutation 3 = mutant 3	3	177	Leu	Arg	
	4	211	Gly		
mutation 4 = mutant 4 mutation 5 = mutant 5	5	213	Gly	Val	
mutation 6 = mutant 6	6	235	Ser	Leu	

e SVT - M POURCHER (MAJ : 10/10/2022)

Les expériences de Beadle et Tatum

En 1941, bien avant la découverte de la structure de l'ADN (1953), Beadle et Tatum s'intéressent plus particulièrement à un champignon filamenteux appelé *Neurospora crassa*. C'est une « moisissure » qui peut facilement être cultivée sur un milieu gélosé, sur boite ou dans un tube.

A partir de l'analyse des documents et de vos connaissances, déterminez en quoi les expériences de Beadle et Tatum puis celle de Yanofsky permettent d'aboutir au dogme « Un gène produit une protéine ».

Document 1 : La voie de biosynthèse du tryptophane chez Neurospora crassa

Les premiers travaux de Beadle et Tatum concernent la biochimie et la production de différentes molécules chimiques. Après extraction et purification, ils comprennent que les champignons Neurospora doivent produire du tryptophane pour se développer. La production de tryptophane dépend d'une suite de réactions chimiques dépendantes de 3 **enzymes**.

Document 2 : L'obtention de mutants de Neurospora crassa

Pour identifier si l'ADN peut impacter la production de tryptophane chez Neurospora, les deux chercheurs ont réalisé une expérience de **mutagenèse** : ils ont irradié les souches de Neurospora aux rayons X pour produire des **mutations**. A la suite de l'irradiation, ils cultivent les champignons sur différents milieux. Les résultats sont présentés dans le tableau ci-dessous.

	Milieu minimum (MM)	MM + acide anthranilique	MM + indole	MM + Tryptophane
Souche sauvage	+	+	+	+
Mutants A	0	+	+	+
Mutants B	0	0	+	+
Mutants C	0	0	0	+

^{+ :} croissance du champignon ; 0 : pas de croissance (mort du champignon).

Document 3 : La caractérisation des mutants de classe C

En 1967, Yanofsky utilise une technique biochimique pour identifier la suite des acides aminés de l'enzyme TryA (enzyme 3 du document 1).

Il compare alors l'enzyme TryA produite par le champignon sauvage et l'enzyme Try1 présente chez les mutants de type C. Il reproduit cette expérience avec 6 mutants. Ses résultats sont présentés dans le tableau ci-contre.

Position relative des mutations étudiées sur l'ADN du gène <i>TryA</i>	Différences entre la protéine TryA normale et la protéine Try1 des mutants			
		Position de l'acide	Acide aminé présent	
mutation 1 = mutant 1	Mutant	aminé modifié	dans la protéine normale	chez le mutant
mutation 2 = mutant 2	1	22	Phe	Leu
	2	49	Glu	ou Gln ou Met
mutation 3 = mutant 3	3	177	Leu	Arg
	4	211	Gly	ou Glu
mutation 4 = mutant 4 mutation 5 = mutant 5	5	213	Gly	Val
mutation 6 = mutant 6	6	235	Ser	Leu

e SVT - M POURCHER (MAJ : 10/10/2022)