THEME 1 - Energie et cellule vivante

TP1 - La photosynthèse et la production primaire

Les végétaux chlorophylliens sont qualifiés de <u>producteurs primaires</u> car ils présentent un métabolisme <u>autotrophe</u>. Ils sont capables de produire leur matière organique (glucose, amidon ...) à partir d'eau, de sels minéraux et de lumière. Cette réaction correspond à la **photosynthèse**, une réaction à l'origine de la quasi-totalité de la biomasse terrestre.

Problème posé : Comment déterminer les caractéristiques (localisation et échanges) de la photosynthèse ?

A partir du matériel disponible, vous devrez déterminer l'équation bilan de la photosynthèse et préciser sa localisation à l'échelle cellulaire.

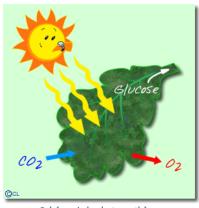
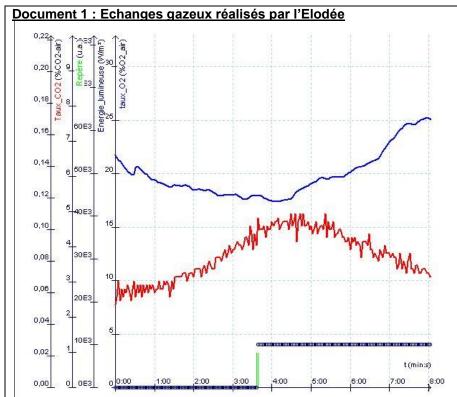
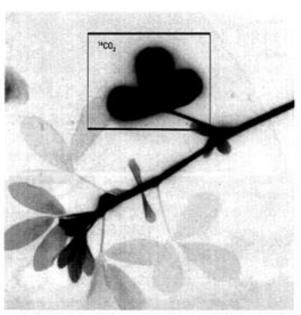
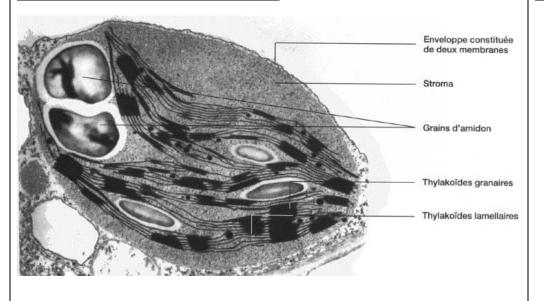



Schéma de la photosynthèse

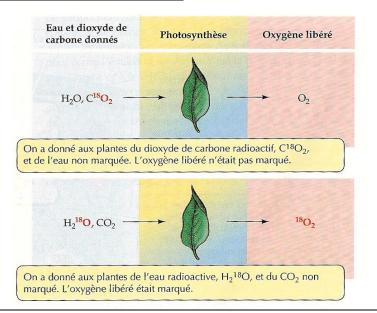

Matériel et données :

- Végétaux (Euglènes, Elodée, Géranium ou Cabomba) éclairés et à l'obscurité depuis plusieurs jours
- Matériel courant de laboratoire : Verrerie (bécher, tube à essai, pipettes ...), microscope optique, lame, lamelle, eau iodée
- Documents, PC équipé des logiciels classiques, Matériel ExAO

Propositions d'activités	Capacités
On cherche à identifier les échanges réalisés au cours de la photosynthèse ainsi que la structure intracellulaire responsable de la photosynthèse. > ETAPE 1 : Proposez une démarche de résolution à partir du matériel disponible.	Proposer une démarche de résolution
 ETAPE 2 : Réalisez les manipulations proposées. Appelez le professeur pour vérification 	Suivre un protocole (Manipulation ExAO)
> ETAPE 3 : Présentez vos résultats sous une forme judicieuse.	Réaliser une observation microscopique
 ETAPE 4 : Analysez l'ensemble des données pour : proposer une équation bilan de la photosynthèse correctement équilibrée 	Acquérir une image numérique
- identifier l'organite responsable de la photosynthèse	Adopter une démarche explicative
- compléter le schéma bilan proposé par le professeur	Réaliser un schéma
Nettoyez et rangez le matériel utilisé	Gérer le poste de travail



Document 2 : Origine du carbone organique (matière organique)



Une expérience d'autoradiographie. Sur ce pied de lupin, la feuille indiquée par le cadre a été mise dans une enceinte dont le carbone du CO₂ est radioactif (¹⁴CO₂). Ainsi, plus une zone est sombre sur la photo obtenue, plus elle est riche en carbone organique radioactif.

Document 3 : Structure d'un chloroplaste

Document 4 : Origine du dioxygène dégagé

PROTOCOLES EXPERIMENTAUX - Photosynthèse

Matériel mis à disposition :

- Une chaîne d'acquisition ExAO (comprenant une sonde à O₂, une sonde à CO₂)
- Un dispositif d'agitation
- Fiche technique (Latis Bio)
- une suspension d'euglènes (Euglena gracilis) et des fragments d'Elodée ou de Cabomba
- Papier absorbant
- Cristallisoir
- Eau distillée

Protocole: Détermination des échanges gazeux de la photosynthèse (ExAO)

- **Préparer l'enceinte** pour les mesures. Pour une mesure optimale, il est conseillé de remplir complètement l'enceinte afin d'éviter les bulles d'air.
- **Paramétrer** une mesure de 20 minutes des concentrations de dioxygène et de dioxyde de carbone dans l'enceinte, avec une agitation constante et modérée.
- A 4 minutes, ouvrez les volets de l'enceinte pour permettre l'éclairement.
- A 12 minutes, refermez les volets pour arrêter l'éclairement.
- En fin d'expérience, enregistrer votre travail dans le répertoire « Restitutions de devoir »
- Ranger et nettoyer le matériel ExAO (bien rincer les sondes à l'eau distillée).

Ressources supplémentaires :

L'eau iodée et un réactif spécifique de l'amidon. En présence de ce glucide, elle prend une couleur violet foncé à noir. S'il n'y a pas d'amidon, l'eau iodée reste d'une couleur jaune – orangé.

L'amidon est une forme de stockage du glucose, produit de la photosynthèse.

Matériel

- deux microscopes,
- lames et lamelles,
- pince,
- ciseaux,
- flacon d'eau iodée,
- flacon d'eau distillée,
- deux verres de montre,
- un feutre et un chronomètre
- un fragment identifié de feuille de placée à la lumière pendant 48h,
- un fragment identifié de feuille de géranium placée à l'obscurité depuis 48 h.

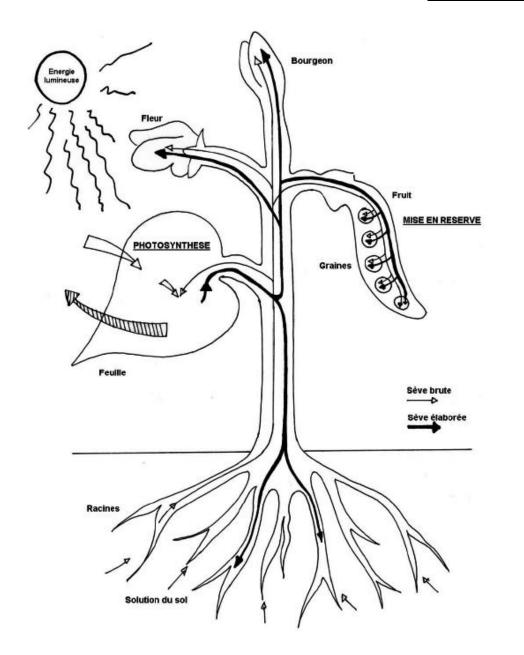
Afin de déterminer si les chloroplastes des cellules stomatiques d'une feuille sont fonctionnels :

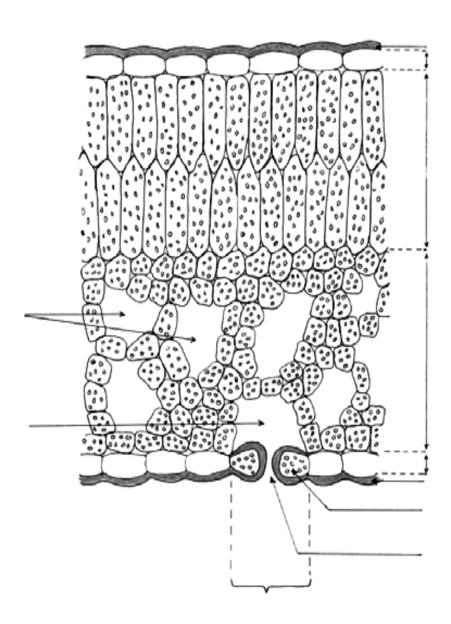
- A l'aide des ciseaux et de la pince, **retirer** un fragment d'épiderme inférieur de la feuille placée à la lumière pendant 48h,
- Colorer à l'eau iodée dans un verre de montre pendant 5 minutes,
- Monter entre lame et lamelle dans une goutte d'eau distillée puis observer au microscope
- Faire de même pour la feuille placée à l'obscurité puis comparer

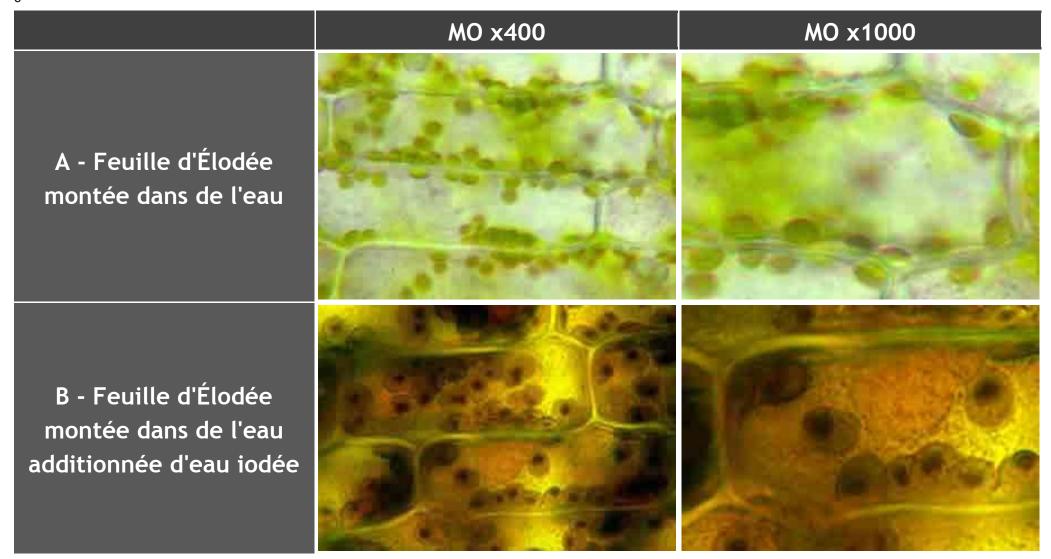
Appeler l'examinateur à la fin de la manipulation pour vérification

Précautions de la manipulation

Organisez votre plan de travail pour ne pas confondre les deux fragments d'épiderme.


TP1- La photosynthèse et la production primaire


Fiche réponse – candidat


NOM:	Classe:
Prénom :	

A rendre à l'issue de l'épreuve – Utiliser le verso si nécessaire

Schéma bilan photosynthèse

